Приложение 1 к РПД Геоинформационные системы в экологии и природопользовании 05.03.06 Экология и природопользование Направленность (профиль) Природопользование и охрана окружающей среды Арктических территорий Форма обучения — очная Год набора — 2022

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.	Кафедра	Естественных наук
2.	Направление подготовки	05.03.06. Экология и природопользование
3.	Направленность	Природопользование и охрана окружающей среды
	(профиль)	Арктических территорий.
4.	Дисциплина (модуль)	Геоинформационные системы в экологии и
		природопользовании
5.	Форма обучения	очная
6.	Год набора	2022

1. Методические рекомендации по организации работы студентов во время проведения лекционных, практических и лабораторных занятий

1.1 Методические рекомендации по организации работы студентов во время проведения лекционных занятий

В ходе лекционных занятий студенту необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание изучаемой дисциплины, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве.

Желательно оставить в рабочих конспектах поля, на которых делать пометки, подчеркивающие особую важность тех или иных теоретических положений. Рекомендуется активно задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

В случае отсутствия на лекционном занятии по уважительной причине, студенту необходимо подготовить конспект лекции самостоятельно, пользуясь рекомендованной литературой.

1.2 Методические рекомендации по подготовке к практическим (семинарским) занятиям

В ходе подготовки к практическим (семинарским) занятиям следует изучить основную и дополнительную литературу, учесть рекомендации преподавателя и требования рабочей программы.

Можно подготовить свой конспект ответов по рассматриваемой тематике, подготовить тезисы для выступлений по всем учебным вопросам, выносимым на занятие. Следует продумать примеры с целью обеспечения тесной связи изучаемой теории с реальной практикой. Можно дополнить список рекомендованной литературы современными источниками, не представленными в списке рекомендованной литературы.

На практических занятиях студенту необходимо выполнить задание для самостоятельной работы.

В случае отсутствия на практическом (семинарском) занятии по уважительной причине, студенту необходимо подготовить конспект ответов на вопросы семинара самостоятельно, пользуясь рекомендованной литературой.

1.3 Методические рекомендации по подготовке к лабораторным занятиям

В ходе подготовки к лабораторным занятиям следует изучить основную и дополнительную литературу, учесть рекомендации преподавателя и требования рабочей программы.

1.4 Методические рекомендации по подготовке презентаций

Подготовку презентационного материала следует начинать с изучения нормативной и специальной литературы, статистических данных, систематизации собранного материала. Презентационный материал должен быть достаточным для раскрытия выбранной темы.

Подготовка презентационного материала включает в себя не только подготовку слайдов, но и отработку навыков ораторства и умения организовать и проводить диспут.

Создание презентационного материала дает возможность получить навыки и умения самостоятельного обобщения материала, выделения главного.

При подготовке мультимедийного презентационного материала важно строго соблюдать заданный регламент времени.

Необходимо помнить, что выступление состоит из трех частей: вступления, основной части и заключения. Прежде всего, следует назвать тему своей презентации, кратко перечислить рассматриваемые вопросы, избрав для этого живую интересную форму изложения.

Большая часть слайдов должна быть посвящена раскрытию темы. Задача выступающего состоит не только в том, что продемонстрировать собственные знания, навыки и умения по рассматриваемой проблематике, но и заинтересовать слушателей, способствовать формированию у других студентов стремления познакомиться с нормативными и специальными источниками по рассматриваемой проблематике.

Алгоритм создания презентации

1 этап – определение цели презентации

2 этап – подробное раскрытие информации,

3 этап - основные тезисы, выводы.

Следует использовать 10-15 слайдов. При этом:

- первый слайд титульный. Предназначен для размещения названия презентации, имени докладчика и его контактной информации;
- на втором слайде необходимо разместить содержание презентации, а также краткое описание основных вопросов;
 - все оставшиеся слайды имеют информативный характер.

Обычно подача информации осуществляется по плану: тезис – аргументация – вывод.

Рекомендации по созданию презентации:

- 1. Читабельность (видимость из самых дальних уголков помещения и с различных устройств), текст должен быть набран 24-30-ым шрифтом.
 - 2. Тщательно структурированная информация.
- 3. Наличие коротких и лаконичных заголовков, маркированных и нумерованных списков.
 - 4. Каждому положению (идее) надо отвести отдельный абзац.
 - 5. Главную идею надо выложить в первой строке абзаца.
- 6. Использовать табличные формы представления информации (диаграммы, схемы) для иллюстрации важнейших фактов, что даст возможность подать материал компактно и наглядно.

- 7. Графика должна органично дополнять текст.
- 8. Выступление с презентацией длится не более 10 минут.

Подготовленные презентации демонстрируются на практических (семинарских) занятиях.

1.5 Методические рекомендации по подготовке доклада

Алгоритм создания доклада:

- 1 этап определение темы доклада
- 2 этап определение цели доклада
- 3 этап подробное раскрытие информации
- 4 этап формулирование основных тезисов и выводов.

Студент выступает с подготовленным докладом на практических (семинарских) занятиях.

1.6 Методические рекомендации по подготовке реферата

Алгоритм подготовки реферата:

- 1 этап определение темы реферата
- 2 этап работа с литературными источниками
- 3 этап подробное изложение информации
- 4 этап формулирование основных тезисов и выводов.

Структура реферата должна включать титульный лист, содержание, введение, основную часть, заключение, список литературы, состоящий из не менее 15 источников.

Требования к оформлению реферата: общий объем до 15 страниц, шрифт Times New Roman, кегль 14, абзац 1,25, междустрочный интервал 1,5, расположение текста по ширине листа. В тексте сквозная нумерация глав, параграфов, таблиц и рисунков. Таблицы и рисунки должны иметь название. Оформление списка литературы по ГОСТ 2003 г. В тексте работы должны быть ссылки на все источники из списка литературы.

1.7 Методические рекомендации по подготовке к контрольному тестовому заданию

В ходе подготовки к выполнению контрольного тестового задания следует изучить основную и дополнительную литературу, учесть рекомендации преподавателя и требования рабочей программы.

1.8 Методические рекомендации по подготовке к контрольному заданию

В ходе подготовки к выполнению контрольного задания следует изучить основную и дополнительную литературу, учесть рекомендации преподавателя и требования рабочей программы.

1.9 Методические рекомендации по подготовке к сдаче экзамена

Студенты обязаны сдать экзамен в соответствии с расписанием и учебным планом. Экзамен по дисциплине преследует цель оценить работу студента за курс, получение теоретических знаний, их прочность, приобретение навыков самостоятельной работы, умение применять полученные знания для решения практических задач.

Форма проведения экзамена – устно. Педагогу предоставляется право задавать вопросы студентам по всей программе дисциплины.

Результат сдачи экзамена заносится преподавателем в ведомость и зачетную книжку.

В ходе подготовки к экзамену внимательно относитесь к срокам сдачи экзамена, форме проведения, к требованиям, которым должен соответствовать ответ студента; выясните перечень вопросов, по которым будет проводиться экзамен; узнайте дополнительные источники информации. Основной способ подготовки к экзамену - систематическое посещение занятий; своевременно восстанавливайте возникшие пробелы.

1.10 Методические рекомендации по выполнению курсовых работ Не предусмотрено

2. Планы практических и лабораторных занятий

Планы практических занятий

Раздел 1. Геоинформатика как наука. Базовые понятия геоинформатики. Типы ГИС. Программные средства ГИС. (4 часа)

Практическое (семинарское) занятие № 1. Введение в геоинформатику (2 часа).

План:

- 1. Понятие о геоинформационных системах. Основные термины и определения.
- 2. Место геоинформатики в системе научных знаний.
- 3. История становления научной дисциплины. Корифеи. Школы геоинформатики.
- 4. Классификации ГИС (по пространственному охвату, по объекту и предметной области, по проблемной ориентации, по функциональности, по уровню управления).
- 5. Способы ввода данных в ГИС (сканирование, ручной и автоматический дигитайзинг). Проблема ошибок цифрования.
- 6. Визуализация данных. Отображение информации картографическим методом, создание условных знаков в ГИС. Отображение информации в виде графиков и диаграмм.
- 7. Устройства вывода информации в ГИС (принтер, плоттер). Подготовка к выводу на печатные устройства. Оперативная печать.

Вопросы для самоконтроля:

- 1. Каковы междисциплинарные связи геоинформатики с цифровой картографией, дистанционным зондированием и т.п.?
- 2. Какова история становления геоинформатики?
- 3. По каким основаниям классифицируются ГИС?
- 4. Каковы функциональные возможности ГИС, способы и устройства ввода, визуализации и вывода информации?

Задание для самостоятельной работы: составьте схему классификации ГИС.

Рекомендуемая литература

[1, c. 7 - 20, 63 - 73]

Практическое (семинарское) занятие № 2. Классификация программных средств ГИС. Программа ArcGIS (2 часа).

План:

- 1. Обзор основных характеристик инструментальных ГИС.
- 2. Модульная ArcInfo (ESRI).
- 3. Растровые ГИС (Idrisi).
- 4. Гибридные ГИС (растрово-векторные).
- 5. Настольные ГИС-системы: MapInfo, GeoDraw/GeoGraph, ArcView.

- 6. Отличие ГИС от систем автоматизированного проектирования (CAD) и картографических (MAPPING) систем.
- 7. Системы автоматического и полуавтоматического ввода картографической информации (векторизаторы): EasyTrace, MapEdit.
- 8. Функциональные возможности ArcGIS.

Вопросы для самоконтроля:

- 1. По какому основанию классифицируются программные средства ГИС?
- 2. Каковы функциональные возможности ArcGIS?

Задание для самостоятельной работы: охарактеризуйте структуру ArcGIS.

Рекомендуемая литература

[1, c. 18 - 20, 88 - 102]

Раздел 2. Типы и источники данных. Базы данных и управление ими. (2 часа)

Практическое (семинарское) занятие № 3. Типы и источники данных. Базы данных и управление ими (СУБД) (2 часа).

План:

- 1. Требования к базе данных (БД) в ГИС.
- 2. Системы управления базами данных (СУБД). Модели СУБД (сетевая, иерархическая, реляционная). Ключевые понятия реляционной СУБД.
- 3. Источники данных (картографические источники, материалы дистанционного зондирования, статистические материалы).
- 4. Типы данных. Позиционные и непозиционные (атрибутивные) данные.
- 5. Качество данных и контроль ошибок: позиционная и атрибутивная точность данных, логическая непротиворечивость данных, типы ошибок данных, каппа Коэна.
- 6. Модели пространственных данных (векторная и растровая модели).
- 7. Растровая модель: кодирование и сжатие информации. Дерево квадрантов.
- 8. Модели пространственных объектов (пространственная размерность: точка, линия, полигон, объемная фигура).

Вопросы для самоконтроля:

- 1. Какова система требований к базам данных ГИС?
- 2. Каковы основные модели систем управления базами данных?
- 3. Каковы основные источники данных для ГИС?
- 4. Каковы основные типы и модели данных?
- 5. Каковы основные признаки качества данных?
- 6. Как оценить качество данных?

Задание для самостоятельной работы: составьте схемы моделей СУБД.

Рекомендуемая литература

[1, c. 38 - 56]

Раздел 3. ГИС-технологии. (4 часа)

Практическое (семинарское) занятие № 4. Элементы ГИС-технологий (4 часа).

План:

- 1. Понятие о координатной привязке. Пространственная привязка данных: прямая (непрерывная: географические и декартовы координаты) и косвенная (дискретная). Дискретная привязка: почтовый адрес, почтовый индекс, системы учета земель, системы переписи населения, иерархические системы сеток (ячеек).
- 2. Системы координат: глобальные (ПЗ, СК, WGS), 2- и 3-мерные, система координат Гаусса-Крюгера, UТМ-проекция (универсальная поперечная система Меркатора). Список систем координат в программных ГИС-пакетах.
- 3. Картографические проекции (цилиндрическая, коническая, азимутальная; равноугольная, равновеликая, равнопромежуточная) и проблемы искажений геоизображений.
- 4. Способы трансформирования геоизображений (линейные (аффинные), нелинейные, метод резинового листа).
- 5. Контрольные точки: понятие, значение, необходимое количество и распределение.
- 6. Оценка ошибок трансформирования.
- 7. Способы кодирования пространственных объектов (точка, линия, полигон) и взаимосвязей (связи в сетях, связи между полигонами).
- 8. Создание объектов при помощи операций оверлея, вырезания, построения буферных зон.

Вопросы для самоконтроля:

- 1. Что такое «координатная привязка»?
- 2. Каковы основные картографические проекции?
- 3. Каковы основные способы трансформирования геоизображений?
- 4. Какое количество контрольных точек необходимо для построения геоизображения поверхности?
- 5. В чем суть оценок ошибок трансформирования?
- 6. Каковы основные способы геокодирования пространственных объектов?

Задание для самостоятельной работы: охарактеризуйте основные проблемы применения различных ГИС-технологий для решения практических задач в области экологии и природопользования.

Рекомендуемая литература

[1, c. 21 - 35, 63 - 73, 78 - 79]

Раздел 4. Геоанализ и моделирование. (4 часа)

Практическое (семинарское) занятие № 5. Методы пространственного анализа (2 часа).

План:

- 1. Задачи пространственного анализа.
- 2. Измерительные операции (длина, извилистость, периметр, площадь).
- 3. Методы интеграции признаков для классификации объектов: классификация объектов путем группировки значений их признака (группировка естественных интервалов, равных классов, равных интервалов, равных площадей, стандартных отклонений).

- 4. Методы интеграции признаков для классификации объектов: методы многомерного статистического анализа (факторный и компонентный анализ).
- 5. Методы интеграции признаков для исследования взаимосвязей объектов: корреляционный и регрессионный анализ.
- 6. Анализ взаимосвязей объектов с использованием операций оверлея слоев: совместный анализ слоев (объединение, пересечение, касание, принадлежность объектов).
- 7. Проблемы наложения слоев. Реклассификация объектов.
- 8. Анализ сетей.

Вопросы для самоконтроля:

- 1. Каковы задачи геоанализа?
- 2. В чем суть методов интеграции признаков для классификации объектов?

Задание для самостоятельной работы: составьте схему классификации методов геоанализа.

Рекомендуемая литература

[1, c. 74 - 87]

Практическое (семинарское) занятие № 6. Методы пространственного моделирования (2 часа).

План:

- 1. Понятие математико-картографического моделирования и его направления (моделирование структуры, взаимосвязей и динамики геосистем). Компоненты математико-картографического моделирования: картографические и математические модели.
- 2. Понятие цифровой модели рельефа местности (ЦМР). Представление непрерывных поверхностей (GRID, TIN, TGRID).
- 3. Построение TIN-поверхности. Триангуляция Делоне.
- 4. Применение интерполяций для построения поверхностей. Глобальная и локальная интерполяция. Методы обратных взвешенных расстояний, сплайнов, кригинга, выявления тренда.
- 5. Функции картографической алгебры: локальные, фокальные, зональные, глобальные.
- 6. Моделирование поверхности: определение местоположения и оптимального размещения объектов с использованием оверлея слоев.

Вопросы для самоконтроля:

- 1. Каковы задачи пространственного моделирования?
- 2. Каковы основные направления математико-картографического моделирования?
- 3. Что такое «цифровая модель рельефа»?
- 4. Каким образом можно представить непрерывные поверхности?
- 5. В чем суть методов интерполяции?
- 6. Каковы функции картографической алгебры?

Задание для самостоятельной работы: определите местоположение и оптимальное размещение объекта (по выбору) с использованием оверлея слоев.

Рекомендуемая литература

Раздел 5. Прикладные аспекты геоинформатики. ГИС как основа интеграции пространственных данных и технологий. (8 часов)

Практическое (семинарское) занятие № 7. Проектирование ГИС (2 часа).

План:

- 1. Основные цели, этапы и правила разработки системного проекта ГИС.
- 2. Аппаратные средства геоинформатики, их выбор при проектировании ГИС.
- 3. Выбор программного обеспечения при проектировании ГИС.
- 4. Общие вопросы проектирования базы данных ГИС.
- 5. Выбор системы координат и проекции.
- 6. Выбор базового масштаба, разрешения и уровня детальности в зависимости от назначения ГИС.

Вопросы для самоконтроля:

- 1. Каковы основные цели, этапы и правила разработки системного проекта ГИС?
- 2. Каковы основания для выбора аппаратных средств, программного обеспечения, базового масштаба, системы координат и проекции при разработке проекта ГИС?

Задание для самостоятельной работы: определите основные направления создания ГИС-проектов в сфере экологии и природопользования.

Рекомендуемая литература

[1, c. 103 - 123]

Практическое (семинарское) занятие № 8. ГИС как основа интеграции пространственных данных и технологий (2 часа).

План:

- 1. ГИС и дистанционное зондирование. Физические основы дистанционного зондирования земной поверхности.
- 2. Типы сканирующих систем, радиолокационные системы.
- 3. Типы космических снимков: по технологии получения, по спектральному диапазону, обзорности и пространственному разрешению.
- 4. Спектральная отражательная способность основных классов природных объектов.
- 5. Основные системы получения космических снимков.
- 6. Методы дешифрования космических снимков.
- 7. ГИС и глобальные системы позиционирования. GPS и ГЛОНАСС: основные характеристики.
- 8. ГИС и интернет.
- 9. Архитектура «клиент сервер». Клиент-серверное взаимодействие.
- 10. Пространственные базы данных коллективного пользования. Удаленный доступ к базам данных.
- 11. Понятие о мультимедиа.

Вопросы для самоконтроля:

1. Каковы взаимосвязи ГИС с дистанционным зондированием, с глобальными системами позиционирования, с интернет-пространством?

- 2. Каковы физические основы дистанционного зондирования земной поверхности?
- 3. Каковы типы сканирующих систем?
- 4. Каковы типы космических снимков?
- 5. Какова спектральная отражательная способность основных классов природных объектов?
- 6. Каковы основные методы дешифрования космических снимков?
- 7. В чем различие систем GPS и ГЛОНАСС?
- 8. Какова суть клиент-серверного взаимодействия?
- 9. Что такое «мультимедиа»?

Задание для самостоятельной работы: определите основные направления использования дистанционного зондирования, глобальных систем позиционирования в ГИС, сети интернет в ГИС для решения задач в области экологии и природопользования.

Рекомендуемая литература

[1, c. 96 - 97]

Практическое (семинарское) занятие № 9. Прикладные аспекты геоинформатики. Региональные и отраслевые геоинформационные проекты (4 часа).

План:

- 1. ГИС и управление. Муниципальное и отраслевое управление. Логистика.
- 2. Применение ГИС в геологии. Геологическая съемка. Дистанционное зондирование при геологической съемке.
- 3. ГИС и землепользование. Информационное обеспечение управления земельными ресурсами. Значение информационных систем и технологий для ведения государственного земельного кадастра.
- 4. Сферы применения ГИС в лесном хозяйстве: построение моделей ландшафтов и рельефа, составление тематических карт (почв, лесотипологических, подроста, подлеска, бонитета, склонов, условий места произрастания, выделов).
- 5. Экологические информационные системы (ЭИС). Области использования ГИСтехнологий для решения экологических задач (деградация среды обитания, загрязнение, ООПТ, неохраняемые территории, восстановление среды обитания, междисциплинарные исследования (экология и медицина/демография/климатология), экологической образование, экологический туризм, экологический мониторинг.

Вопросы для самоконтроля:

- 1. Каковы области применения ГИС?
- 2. Каковы основные направления применения ГИС в природопользовании?
- 3. Каковы основные направления применения ГИС в экологии?

Задание для самостоятельной работы: определите основные направления применения ГИС в сфере экологии и природопользования Мурманской области.

Рекомендуемая литература

[1, c. 10 - 11]

Планы лабораторных занятий

Раздел 1. Геоинформатика как наука. Базовые понятия геоинформатики. Типы ГИС. Программные средства ГИС. (2 часа)

Лабораторное занятие № 1. Программа ArcGIS. Начала работы в ArcGIS: Знакомство с пользовательским интерфейсом ArcMap, основы создания и редактирования объектов. (2 часа)

Работа с использованием интерактивных компьютерных технологий.

План:

- 1. Знакомство с ArcGIS. Функциональные уровни ArcGIS: ArcView, ArcCatalog, ArcInfo. Общие программные приложения ArcGIS: ArcMap, ArcEditor, ArcToolBox. Знакомство с пользовательским интерфейсом ArcMap.
- 2. Начала работы в ArcGIS с использованием картографических данных Национального парка Зайон в штате Юта (США): основы создания и редактирования объектов.

Рекомендуемая литература

[1, c. 38 - 56]

Раздел 2. Типы и источники данных. Базы данных и управление ими. (4 часа)

Лабораторное занятие № 2. Программа ArcGIS. Начала работы в ArcGIS: основы работы с базой данных GIS. (4 часа)

Работа с использованием интерактивных компьютерных технологий.

План:

1. Начала работы в ArcGIS: организация данных в ArcCatalog, импорт данных в базу геоданных, создание подтипов и атрибутивных доменов, создание отношений между объектами, построение геометрической сети, создание аннотаций, создание слоев для данных из базы геоданных, создание топологии.

Рекомендуемая литература

[1, c. 38 - 56]

Раздел 3. ГИС-технологии. (6 часов)

Лабораторное занятие № 3. Программа ArcGIS. Начала работы в ArcGIS: создание и редактирование объектов, аннотаций и топологий; пространственные преобразования. (6 часов)

Работа с использованием интерактивных компьютерных технологий.

План:

1. Работа в ArcGIS с использованием картографических данных Национального парка Зайон в штате Юта (США): создание и редактирование аннотаций, редактирование общих объектов и топологий, использование пространственных преобразований.

Рекомендуемая литература

Раздел 4. Геоанализ и моделирование. (6 часов)

Лабораторное занятие № 4. Программа ArcGIS. Начала работы в ArcGIS: геоанализ и моделирование поверхностей, работа с растрами. (6 часов)

Работа с использованием интерактивных компьютерных технологий.

План:

- 1. Создание наборов данных мозаики (растров).
- 2. Создание последовательностей функций в наборах данных мозаики.
- 3. Растры с функциями.
- 4. Окно «Анализ изображений».
- 5. Функции растра (или набора данных мозаики).
- 6. Реализация алгоритма с помощью функций набора данных мозаики.
- 7. Идентификация пространственных объектов.
- 8. Использование «испектора пикселов».
- 9. Комбинирование отмытой цифровой модели рельефа (ЦМР) со сканированной картой.
- 10. Редактирование последовательности функций набора данных мозаики.
- 11. Удаление контуров в наборе данных мозаики.

Рекомендуемая литература

[1, c. 43 - 47, 57 - 62, 74 - 87]

Раздел 5. Прикладные аспекты геоинформатики. ГИС как основа интеграции пространственных данных и технологий. (4 часа)

Лабораторное занятие № 5. Программа ArcGIS. Геоанализ и моделирование экологического каркаса территории в среде ArcGIS (4 часа).

Работа с использованием интерактивных компьютерных технологий.

Задание: пользуясь функционалом программного пакета ArcGIS в программном приложении ArcMap:

- 1. Создайте слой базовой карты «Мурманская область»;
- 2. Добавьте слой «Экологический каркас территории Мурманской области» и оцифруйте линии функциональных звеньев экологического каркаса (ядер, буферных зон, транзитных элементов);
- 3. Добавьте слой «Заповедники Мурманской области» и оцифруйте линии границ Кандалакшского и Лапландского заповедников и российскую территорию Пасвика. Подпишите названия заповедников на карте;
- 4. Добавьте слой «Полярно-альпийский ботанический сад-институт» и нанесите на карту в виде точечного объекта ПАПСИ;
- 5. Создайте легенду карты.
- 6. Рассчитайте площадь российского участка заповедника Пасвик.

Рекомендуемая литература

[1, c. 43 – 47, 57 – 62, 74 – 87]